2016
DOI: 10.15376/biores.11.3.6426-6437
|View full text |Cite
|
Sign up to set email alerts
|

Characterization of Lignin Derivatives in Alkaline Polyethylene Glycol-treated Soda Cooking Black Liquor Powder

Abstract: To improve the thermal properties of softwood soda lignin, we studied a method of lignin modification using black liquor powder and polyethylene glycol (PEG). In this process, the black liquor powder was directly treated with PEG under alkaline conditions to produce a thermal melting material (alkaline PEG treatment). A model experiment was performed to determine the reaction of the lignin. The lignin in the black liquor powder consisted of 62.16% acid-insoluble lignin (purified lignin) and 37.84% acid-soluble… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2017
2017
2021
2021

Publication Types

Select...
3
1

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 25 publications
0
2
0
Order By: Relevance
“…The method normally used by the pulp and paper industries to deal with the waste liquor from the kraft cooking process is recovery, concentration, and combustion. However, the lignin can be isolated and used as the starting material for a series of useful products [14,15]. As a potential biorefinery process, the latter method is attractive; moreover, the separation of lignin following non-sulfur soda-AQ cooking is simpler and more efficient than that following kraft cooking, as the kraft cooking liquor contains sulfide, sulfite, and sulfate, which can produce toxic gases such as hydrogen sulfide and sulfur dioxide.…”
Section: Introductionmentioning
confidence: 99%
“…The method normally used by the pulp and paper industries to deal with the waste liquor from the kraft cooking process is recovery, concentration, and combustion. However, the lignin can be isolated and used as the starting material for a series of useful products [14,15]. As a potential biorefinery process, the latter method is attractive; moreover, the separation of lignin following non-sulfur soda-AQ cooking is simpler and more efficient than that following kraft cooking, as the kraft cooking liquor contains sulfide, sulfite, and sulfate, which can produce toxic gases such as hydrogen sulfide and sulfur dioxide.…”
Section: Introductionmentioning
confidence: 99%
“…It is an attractive component due to the rich aromatic character of the biopolymer [3][4][5]. This is responsible for its high affinity to carbon-based materials, in addition to strong adsorption on the sp 2 -hybridized carbon surfaces of platforms [10][11][12].…”
Section: Introductionmentioning
confidence: 99%