The polysaccharide alginate forms a protective capsule for Pseudomonas aeruginosa during chronic pulmonary infections. The structure of alginate, a linear polymer of 1-4-linked O-acetylated D-mannuronate (M) and L-guluronate (G), is important for its activity as a virulence factor. Alginate structure is mediated by AlgG, a periplasmic C-5 mannuronan epimerase. AlgG also plays a role in protecting alginate from degradation by the periplasmic alginate lyase AlgL. Here, we show that the C-terminal region of AlgG contains a right-handed -helix (RHH) fold, characteristic of proteins with the carbohydrate-binding and sugar hydrolase (CASH) domain. When modeled based on pectate lyase C of Erwinia chrysanthemi, the RHH of AlgG has a long shallow groove that may accommodate alginate, similar to protein/polysaccharide interactions of other CASH domain proteins. The shallow groove contains a 324-DPHD motif that is conserved among AlgG and the extracellular mannuronan epimerases of Azotobacter vinelandii. Point mutations in this motif disrupt mannuronan epimerase activity but have no effect on alginate secretion. The D324A mutation has a dominant negative phenotype, suggesting that the shallow groove in AlgG contains the catalytic face for epimerization. Other conserved motifs of the epimerases, 361-NNRSYEN and 381-NLVAYN, are predicted to lie on the opposite side of the RHH from the catalytic center. Point mutations N362A, N367A, and V383A result in proteins that do not protect alginate from AlgL, suggesting that these mutant proteins are not properly folded or not inserted into the alginate biosynthetic scaffold. These motifs are likely involved in asparagine and hydrophobic stacking, required for structural integrity of RHH proteins, rather than for mannuronan catalysis. The results suggest that the AlgG RHH protects alginate from degradation by AlgL by channeling the alginate polymer through the proposed alginate biosynthetic scaffold while epimerizing approximately every second D-mannuronate residue to L-guluronate along the epimerase catalytic face.Alginate is a viscous polysaccharide produced by brown seaweed and by certain bacteria, including Pseudomonas and Azotobacter species. Alginate is a high-molecular-weight linear copolymer composed of -D-mannuronic acid (M) and its C 5 epimer ␣-L-guluronic acid (G) linked by 1-4 glycosidic bonds. In bacterial but not in algal alginates, the M residues are modified by the addition of O-acetyl groups at the O-2 and/or O-3 position (70).In the opportunistic pathogen Pseudomonas aeruginosa, alginate is an important virulence factor, particularly in patients with the genetic disorder cystic fibrosis, where conversion of strains to the alginate-overproducing (mucoid) phenotype often results in chronic pulmonary P. aeruginosa infections (48). Alginate acts as a virulence factor in these infections by contributing to the matrix material of the mucoid P. aeruginosa biofilms (45) and by protecting the bacteria from opsonic phagocytosis (55). Alginate also neutralizes oxygen r...