Articles you may be interested inHigh-temperature stability of postgrowth-annealed Al-doped MgxZn1-xO films without the phase separation effect Films of pure Cu and of Cu alloy containing 2.5 at. % of Zr [abbreviated as Cu͑2.5 at. % Zr͒] were deposited on SiO 2 / Si substrates by magnetron sputtering. Samples were subsequently annealed at temperatures ranging from 500 to 800°C in vacuum ͑2 ϫ 10 −5 Torr͒ for 30 min and analyzed by Rutherford backscattering spectrometry, x-ray photoelectron spectroscopy, and glancing incident angle x-ray diffraction. Resistivity of both pure Cu and Cu alloy films, before and after annealing, was measured at room temperature by using a standard four-point probe technique. Upon annealing, the added Zr atoms in Cu͑2.5 at. % Zr͒ diffuse to both the free surface and the alloy/ SiO 2 interface and react with the residual oxygen in the vacuum system and with the SiO 2 to form a ZrO 2 layer. At the interface, a self-grown ZrO 2 layer forms upon annealing at 700°C that hinders Cu from diffusion into the SiO 2 , while Cu diffusion into SiO 2 is apparent for pure Cu on SiO 2 at this temperature. The room-temperature resistivity of the as-deposited Cu͑2.5 at. % Zr͒ film is 21.8 ⍀ cm and decreases to about 6.2 ⍀ cm upon vacuum annealing at 700°C for 30 min. This value is still thrice that of the pure Cu film similarly treated. The relation between the diffusion of the added Zr and the characteristics of Cu͑2.5 at. % Zr͒ / SiO 2 interface, self-formed surface layer, and the resistivity change, is discussed.