Prostate cancer is the most common male malignancy in Western countries and the second most common cause of cancer-related deaths in males worldwide (15,24). The known risk factors for prostate cancer are hormones (i.e., androgens), diet, sex, and race, as well as environmental and genetic factors (27). A recent study suggests that susceptibility to prostate cancer can be influenced by the genetic variations associated with an antagonistic coevolution, which occurs between a specific host locus (RNASEL), known to be involved in antiviral innate immune defense, and a viral pathogen (38). Indeed, several epidemiologic studies have supported the involvement of the RNASEL gene in the prostate cancer etiology (4,5,30,31), whereas other studies do not (9,22,34,43). Some studies have reported that individuals with a single mutated copy of the RNASEL gene have a 50% increased risk for prostate cancer, whereas those with homozygous mutant RNASEL alleles have a 2-fold-increased risk of prostate cancer (5).The RNASEL gene encodes for the RNase L protein, a constitutively expressed latent endoribonuclease, which mediates the interferon-inducible 2-5A system against viral and/or cellular double-stranded RNAs (8,16,20,23,49,50). The RNase L "Q" variant allele (R462Q) shows a 3-fold decrease in catalytic activity compared to the wild-type enzyme (5, 44). The possible association of mutant RNASEL alleles with human prostate cancers suggests an enhanced susceptibility of prostate tissues to a viral agent. This hypothesis has led to the recent identification of a new human retrovirus, xenotropic murine leukemia virus (MuLV)-related virus (XMRV), in 40% of prostate cancer patients with the QQ variant alleles of RNASEL compared to 1.5% among heterozygous (RQ) and wild-type (RR) RNASEL carriers (41). XMRV virus infection appears to be susceptible to inhibition by interferon and its downstream effector RNase L protein (7). However, a recent study has provided some evidence to show that XMRV infection is independent of the RNASEL genotype (34), suggesting that population differences and/or other environmental or genetic factors may influence the impact of RNASEL on prostate cancer development.The XMRV genome is 8,185 nucleotides in length and shares up to 95% overall nucleotide sequence identity with known xenotropic MuLVs (41). One receptor for xenotropic MuLVs is Xpr1, a 696-amino-acid protein with multiple transmembrane-spanning domains (2). Expression of this protein in Chinese hamster ovary (CHO) cells that are not known to express Xpr1 endogenously confers an enhanced susceptibility of these cells to xenotropic MuLV infection (2). Infection of hamster and mouse cells with XMRV-like virus that is derived from a prostate cancer cell line (22Rv1) also requires Xpr1 as a receptor (18). Earlier studies have demonstrated the importance of certain residues located within the putative third and fourth extracellular loops (ECL3 and ECL4) of Mus dunni's Xpr1 in conferring infection by xenotropic MuLVs (25). Furthermore, it has been shown ...