Contact lenses are a common optical aid to provide help with refractive anomalies of the human eye. Construction of contact lenses is a complex engineering task as it requires knowledge of optics, materials science, production and characterization methods for product quality. Besides correcting refractive anomalies, by using contact lenses it is possible to change the characteristics of light through the manipulation of material structure properties. Nanomaterials, such as fullerene C60, are candidates for the medium that interacts with light, thus changing its properties. During material syntheses for contact lenses, fullerenes are added to the base material and optical characteristics of the new nanophotonic material are compared with the base material. The engineering, manufacture and characterization of both a commercial and a new nanophotonic contact lens is presented in this paper. The interaction of water with both base and nanophotonic contact lens materials is described. Using experimental techniques, the phenomena of an exclusion zone (EZ) is also identified.