Taraxacum kok-saghyz (TKS), a rubber-producing plant with excellent potential, emerges as a viable substitute for rubber tree (Hevea brasiliensis). While natural rubber is a desirable material, conventional techniques for assessing rubber content have faced challenges in meeting practical production requirements. To address this issue, we have developed a pyrolysis–mass spectrometry (PY-MS) instrument for the quantitative evaluation of natural rubber (NR) content in rubber-producing plants. The derived standard curve equation, established for the detection of TKS dry weight through external standard calibration, demonstrates a correlation coefficient (R2) surpassing 0.99. The method exhibits commendable recovery rates (93.27–107.83%), relative standard deviations (RSD ≤ 3.93%), and a swift analysis time of merely 10 min per sample, thereby enabling accurate and efficient quantification of NR dry weight. Additionally, the PY-MS system we designed can be modified for vehicular use, enabling on-site, in situ analysis, and it provides substantial support for TKS breeding and propagation efforts. This approach possesses significant potential for extensive utilization in the assessment of rubber content in rubber-producing plants other than TKS. The integration of pyrolysis–mass spectrometry for the identification of polymers with high molecular weight offers a valuable pathway for the examination of diverse polymers.