Tacrolimus is a crucial immunosuppressant for organ transplant patients, requiring therapeutic drug monitoring due to its variable exposure after oral intake. Physiologically based pharmacokinetic (PBPK) modelling has provided insights into tacrolimus disposition in adults but has limited application in paediatrics. This study investigated age dependency in tacrolimus exposure at the levels of absorption, metabolism, and distribution. Based on the literature data, a PBPK model was developed to predict tacrolimus exposure in adults after intravenous and oral administration. This model was then extrapolated to the paediatric population, using a unique reference dataset of kidney transplant patients. Selecting adequate ontogeny profiles for hepatic and intestinal CYP3A4 appeared critical to using the model in children. The best model performance was achieved by using the Upreti ontogeny in both the liver and intestines. To mechanistically evaluate the impact of absorption on tacrolimus exposure, biorelevant in vitro solubility and dissolution data were obtained. A relatively fast and complete release of tacrolimus from its amorphous formulation was observed when mimicking adult or paediatric dissolution conditions (dose, fluid volume). In both the adult and paediatric PBPK models, the in vitro dissolution profiles could be adequately substituted by diffusion-layer-based dissolution modelling. At the level of distribution, sensitivity analysis suggested that differences in blood plasma partitioning of tacrolimus may contribute to the variability in exposure in paediatric patients.