Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Defects in covalent organic frameworks (COFs) play a pivotal role in determining their properties and performance, significantly influencing interactions with adsorbates, guest molecules, and substrates as well as affecting charge carrier dynamics and light absorption characteristics. The present review focuses on the diverse array of techniques employed for characterizing and quantifying defects in COFs, addressing a critical need in the field of materials science. As will be discussed in this review, there are basically two types of defects referring either to missing organic moieties leaving free binding groups in the material or structural imperfections resulting in lower crystallinity, grain boundary defects, and incomplete stacking. The review summarizes an in-depth analysis of state-of-the-art characterization techniques, elucidating their specific strengths and limitations for each defect type. Key techniques examined in this review include powder X-ray diffraction (PXRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA), nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), scanning transmission electron microscopy (STEM), scanning tunneling microscope (STM), high resolution transmission electron microcoe (HRTEM), gas adsorption, acid−base titration, advanced electron microscopy methods, and computational calculations. We critically assess the capability of each technique to provide qualitative and quantitative information about COF defects, offering insights into their complementary nature and potential for synergistic use. The last section summarizes the main concepts of the review and provides perspectives for future development to overcome the existing challenges.
Defects in covalent organic frameworks (COFs) play a pivotal role in determining their properties and performance, significantly influencing interactions with adsorbates, guest molecules, and substrates as well as affecting charge carrier dynamics and light absorption characteristics. The present review focuses on the diverse array of techniques employed for characterizing and quantifying defects in COFs, addressing a critical need in the field of materials science. As will be discussed in this review, there are basically two types of defects referring either to missing organic moieties leaving free binding groups in the material or structural imperfections resulting in lower crystallinity, grain boundary defects, and incomplete stacking. The review summarizes an in-depth analysis of state-of-the-art characterization techniques, elucidating their specific strengths and limitations for each defect type. Key techniques examined in this review include powder X-ray diffraction (PXRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA), nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), scanning transmission electron microscopy (STEM), scanning tunneling microscope (STM), high resolution transmission electron microcoe (HRTEM), gas adsorption, acid−base titration, advanced electron microscopy methods, and computational calculations. We critically assess the capability of each technique to provide qualitative and quantitative information about COF defects, offering insights into their complementary nature and potential for synergistic use. The last section summarizes the main concepts of the review and provides perspectives for future development to overcome the existing challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.