In recent years, the overlay specifications of advanced semiconductor devices have become extremely stringent. This challenging situation becomes severe for every new generation of the device development. However, conventional overlay metrology systems have limited throughput due to their point-based nature. Here, we first demonstrate the novel imaging Mueller-matrix spectroscopic ellipsometry (MMSE) technique, which can measure the overlay error of all cell blocks on a device wafer with extremely high throughput, much faster than conventional point-based spectroscopic ellipsometry (SE) technologies. It provides the super large field of view (FOV) ~ 20 × 20 mm2 together with high sensitivity based on Mueller information, which will be truly innovated solution not only for the overlay metrology, but also for critical dimension (CD) measurement, eventually maximizing process control and productivity of advanced node.