Maltose metabolism during the conversion of transitory (leaf) starch to sucrose requires a 4-␣-glucanotransferase (EC 2.4.1.25) in the cytosol of leaf cells. This enzyme is called DPE2 because of its similarity to the disproportionating enzyme in plastids (DPE1). DPE1 does not use maltose; it primarily transfers a maltosyl unit from one maltotriose to a second maltotriose to make glucose and maltopentaose. DPE2 is a modular protein consisting of a family 77 glycosyl hydrolase domain, similar to DPE1, but unlike DPE1 the domain is interrupted by an insertion of ϳ150 amino acids as well as an N-terminal extension that consists of two carbohydrate binding modules. Phylogenetic analysis shows that the DPE2-type enzyme is present in a limited but highly diverse group of organisms. Here we show that DPE2 transfers the non-reducing glucosyl unit from maltose to glycogen by a ping-pong mechanism. The forward reaction (consumption of maltose) is specific for the -anomer of maltose, while the reverse reaction (production of maltose) is not stereospecific for the acceptor glucose. Additionally, through deletion mutants we show that the glycosyl hydrolase domain alone provides disproportionating activity with a much higher affinity for short maltodextrins than the complete wild-type enzyme, while absence of the carbohydrate binding modules completely abolishes activity with large complex carbohydrates, reflecting the presumed function of DPE2 in vivo.During photosynthesis, as much as one-half of the carbon fixed during the day is stored as transitory starch inside chloroplasts for remobilization at night. The pathway by which starch in leaves is converted to sucrose has only recently been elucidated (1) and some questions remain. The breakdown of storage starch upon seed germination takes place essentially outside of cells (cellular integrity is lost) while transitory starch must be broken down in intact chloroplasts and cells (2). Transitory starch must have some phosphate attached in order to be remobilized at night (3-6). During the day, carbon is exported from the chloroplast almost exclusively as triose phosphate, but at night maltose is exported (7,8). Starch is acted on by -amylase (9), and the resulting -maltose is exported from chloroplasts through a novel maltose transporter (10). Plants lacking this transporter accumulate maltose in their plastids (11). In the cytosol, maltose metabolism requires a 4-␣-glucanotransferase (EC 2.4.1.25). This enzyme was called the cytosolic D enzyme and, by analogy with the plastidial D enzyme, was believed to have no activity with maltose (12). Arabidopsis thaliana plants lacking this enzyme accumulate up to 100-fold more maltose than wild type and grow significantly more slowly (13,14). Potato plants in which this enzyme was reduced in activity accumulated high levels of maltose in leaves but leaf starch synthesis and starch metabolism in tubers was not affected (15).This enzyme is now called disproportionating enzyme 2 (DPE2) 3 because of its similarity to the disproportionat...