Background: Testicular germ cell tumors (TGCTs) are the most common young male malignancy with a steadily rising incidence. Standard clinical practice is radical orchidectomy of suspicious lumps followed by histopathological diagnosis and tumor subtyping. This practice can lead to complications and quality of life issues for the patients. Liquid biopsies, especially cell-free DNA (cfDNA), promised to be true surrogates for tissue biopsies, which are considered dangerous to perform in cases of testicular tumors. In this study, we have performed a systematic review on the potential of cfDNA in TGCT patient management, its potential challenges in translation to clinical application and possible approaches in further research. Materials & Methods: The review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines on EuropePMC and PUBMED electronic databases, with the last update being on October 21, 2021. Due to the high heterogeneity in identified research articles, we have performed an overview of their efficacy. Results: Eight original articles have been identified on cfDNA in TGCT patients published from 2004 to 2021, of which six had more than one TGCT patient enrolled and were included in the final analysis. Three studies investigated cfDNA methylation, one has investigated mutations in cfDNA, two have investigated cfDNA amount, and one has investigated cfDNA integrity in TGCT. The sensitivity of cfDNA for TGCT was found to be higher than in serum tumor markers and lower than miR-371a-3p, with comparable specificity. cfDNA methylation analysis has managed to accurately detect teratoma in TGCT patients. Conclusion: Potential challenges in cfDNA application to TGCT patient management were identified. The challenges relating to the biology of TGCT with its low mutational burden and low cfDNA amounts in blood plasma make next-generation sequencing (NGS) methods especially challenging. We have also proposed possible approaches to help find clinical application, including a focus on cfDNA methylation analysis, and potentially solving the challenge of teratoma detection.