We applied stable carbon isotope ratio ( 13 C/ 12 C) and radiocarbon ( 14 C) analysis for the quantification of three main aerosol sources (coal, biomass and liquid fossil fuel derived aerosol emissions). Submicron aerosol samples (PM 1 ) were collected from 27 th October, 2014 to 19 th January, 2015 at a suburban site of Vilnius city (Lithuania). To determine fossil and non-fossil contributions to submicron carbonaceous aerosol particles, 14 C measurements of total carbon (TC) were performed using single stage accelerator mass spectrometer (SSAMS, NEC, USA). The concentrations of TC and δ 13 C in PM 1 fraction were measured using elemental analyzer interfaced to isotope ratio mass spectrometer (EA-IRMS).The TC concentration during measurement period ranged from 1.3 to 9.6 µg m -3. The variation of TC concentrations can be explained by the influence of long-range transport and dispersion properties of the boundary layer (mixed layer depth).We found that biomass-derived aerosol sources are prevailing in Vilnius during wintertime and ranged from 57% to 84% of total carbonaceous aerosol fraction. Applying isotope mass balance calculations the traffic emissions were estimated to be 15 ± 7% and coal combustion made up 14 ± 9% in PM 1 . To provide better information about the pollution sources, the carbon isotope analysis along air mass transport pattern was performed. Our results demonstrated that the high contribution to PM 1 from coal burning (up to 40%) was observed for air masses transported from highly industrialized Western Europe regions. Combination of stable carbon isotope ratio with the radiocarbon data allow to distinguish coal from liquid fossil fuel in the aerosol particle emissions.