Within the concept of the replacement of fossil with biobased resources, bacterial polyhydroxybutyrate (PHB) can be obtained from volatile fatty acids (VFAs) from agro‐food waste streams and used as an intermediate toward attractive chemicals. Here we address a crucial step in this process, the conversion of PHB to methyl crotonate (MC), which can be converted via cross‐metathesis with ethylene to methyl acrylate and propylene, two important monomers for the plastics industry. The conversion of PHB to MC proceeds via a thermolysis of PHB to crotonic acid (CA), followed by an esterification to MC. At pressures below 18 bar, the thermolysis of PHB to CA is the rate‐determining step, where above 18 bar, the esterification of CA to MC becomes rate limiting. At 200°C and 18 bar, a full conversion and 60% selectivity to MC is obtained. This conversion circumvents processing and application issues of PHB as a polymer and allows PHB to be used as an intermediate to produce biobased chemicals. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42462.