2017
DOI: 10.4153/cjm-2016-030-7
|View full text |Cite
|
Sign up to set email alerts
|

Characterization of Positive Links and the s-invariant for Links

Abstract: We characterize positive links in terms of strong quasipositivity, homogeneity and the value of Rasmussen and Beliakova-Wehrli's s-invariant.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
11
0
1

Year Published

2019
2019
2023
2023

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 13 publications
(12 citation statements)
references
References 35 publications
0
11
0
1
Order By: Relevance
“…Indeed, we may slide any σ 1,2 or σ 3,4 left of σ −1 1,3 using (8.3), and then the first letter of β may be assumed to be either σ 2,3 or σ 1,4 , in which case we apply (8.2). Now assume that β does not contain σ 2,4 , σ 2,3 or σ 1,4 ; that is, β = σ x 1,2 σ y 3,4 for some x, y ≥ 0. Then…”
Section: By These Relations We Getmentioning
confidence: 99%
See 1 more Smart Citation
“…Indeed, we may slide any σ 1,2 or σ 3,4 left of σ −1 1,3 using (8.3), and then the first letter of β may be assumed to be either σ 2,3 or σ 1,4 , in which case we apply (8.2). Now assume that β does not contain σ 2,4 , σ 2,3 or σ 1,4 ; that is, β = σ x 1,2 σ y 3,4 for some x, y ≥ 0. Then…”
Section: By These Relations We Getmentioning
confidence: 99%
“…Consequently, the following is a complete list of strongly quasipositive knots up to 12 crossings. Knot Strongly quasipositive braid representative Comment 3 1 1,1,1 positive braid 5 1 1,1,1,1,1 positive braid 5 2 1,1,2 (2,1,-2) 7 1 1,1,1,1,1,1,1 positive braid 7 2 1,1,(3,2,-3), (2,1,-2), 3 7 3 1,1,1,1,2, (2,1,-2) Theorem 3.1 7 4 1, (3,2,-3), (3,2,1,-2,-3), (2,1,-2),3 7 5 1, 1,1,2, (2,1,-2), (2,1,-2) Theorem 3.1 8 15 1, (3,2,-3), (3,2,-3), (3,2,1,-2,-3), (3,2,1,-2,-3),2,3 9 1 1,1,1,1,1,1,1,1,1 positive braid 9 2 2, (2,1,-2), (4,3,2,-3,-4), 2, (3,2,1,-2,-3), 4 9 3 1,1,1,1,1,1,2, (-1,2,1) Theorem 3.1 9 4 1,1,1,1, (3,2,-3), (2,1,-2), 3 9 5 2, (2,1,-2), (2,1,-2), (4,3,2,-3,-4), (3,2,1,-2,-3), 4 9 6 1,1,1,1,1, 2, (2,1,-2), (2,1,-2) Theorem 3.1 9 7 1,1,1,(3,2,-3), (2,1,-2), 3,3 9 9 1,1,1,1,2,(2,1,-2), (2,1,-2), (2,1,-2) Theorem 3.1 9 10 1, (3,2,-3), (3,2,1,-2,-3),(3,2,1,-2,-3),(3,2,1,-2,-3),(2,1,-2),3 9 13 1,1,1,(3,2,-3),(3,2,1,-2,-3),(2,1,-2),3 9 16 1,1,1,2,2,(2,1,-2),(2,1,-2),(2,1,-2) Theorem 3.1 9 18 1,1,(3,2,-3),(3,2,1,-2,-3),(3,2,1,-2,-3),(2,1,-2),3 9 23 1,1,(3,2,-3),(3,2,1,-2,-3),(2,1,-2),3,3 9 35 2, (2,1,-2), (3,2,-3), (2,1,-2), (4,3,2,-3,-4),(4,3,2,1,-2,-3,-4) 9 38 1, (3,2,-3), (3,2,-3), 2, (2,1,-2),3,(3,2,-3) 9 49 1, (3,2,-3),1,1,2,(2,1,-2), 3 10 49 (2,1,-2),(2,1,-2),(2,1,-2),(2,1,-2),1,(3,2,-3),(3,2,-3),2,3 10 53 1,2,(3,2,1,-2,-3),(2,1,-2),(4,3,-4),(4,3,-4),3,4 10 55 1,1,(3,2,-3),(2,1,-2),(4,3,-4),3,4 10 63 1,1,(4,3,2,1,-2,-3,-4),2,(2,1,-2),(2,1,-2),3,4 10 66 1,1,1,(3,2,1,-2,-3), 2,(2,1,-2),(2,1,-2),3,3 10 80…”
Section: Tables Of Strongly Quasipositive and Quasipositive Knots Up unclassified
“…Let L and L 0 be two oriented links in R 3 . Then, the following properties hold (1) if Σ is a weak cobordism between L and L 0 , then |s(L; F) − s(L 0 ; F)| ≤ −χ(Σ); (2) where # denotes the connected sum, m() denotes the mirror image and is the number of components of L. In particular, s is a strong concordance invariant.…”
Section: Definitionmentioning
confidence: 99%
“…It is possible to associate to D a graph Γ(D), which we call the simplified Seifert graph. The vertices of Γ(D) are the circles in the oriented resolution of D, and there is an edge between two vertices if the corresponding circles shared at least a crossing in D. The edges of the simplified Seifert graph can be divided into three classes: (1) positive, if the circles corresponding to the endpoints of the edge shared only positive crossings, (2) negative if the circles corresponding to the endpoints of the edge shared only negative crossings, and (3) neutral, if the edge is neither positive nor negative. A vertex v of Γ(D) is called positive (resp.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation