N-heterocyclic compounds have extensive biological and pharmaceutical applications. 8-Hydroxyquinoline (8-HQ) also plays a significant role in many fields of life. The excellent biological significance of the 8-HQ prompted us to extend the DFT based studies. The frontier molecular orbitals (FMOs), UV-VIS and solvation model based studies remained unknown. Therefore, we intended to study the natural bond orbital, FMOs, UV-VIS, thermodynamic properties and medium influence on solvation energies, dipole moment, FT-IR and FT-Raman using polarizable continuum model (PCM) and density-based solvation model (SMD). The electronic properties of molecule were calculated by M06-2X/6-31G (d,P) and B3LYP/6-31G (d,p) level of theories. The solvent influence on the geometric parameters, FT-IR and FT-Raman were studied by B3LYP /6-31G(d) method. A good correspondence is found between the optimized parameters and the reported X-ray data. Natural bond orbital reveals that the maximum stabilization energy reached up to 39.64kJ/mol which is responsible for extra stability of the molecule. In solvated 8-HQ, a significant medium effects on FT-IR and FT-Raman intensities is observed. The intensities enhanced from gas to solvent phase. The solvation free energies are found to be -28.710 and -39.456 kJ/mol in PCM and SMD models respectively. FMOs suggested that this molecule contain less hardness and larger softness values. These findings reveal that the molecule might be bioactive.