Our understanding of how forest management practices affect the relative importance of autochthonous vs. allochthonous resource use by headwater stream food webs is relatively poor. To address this, we used stable isotope (C, N, and H) analyses of food sources and macroinvertebrates from 15 streams in New Brunswick (Canada) and assessed how different catchment conditions arising from the gradient in forest management intensity affect the contribution of autochthonous resources to these food webs. Aquatic primary production contributed substantially to the biomass of invertebrates in these headwater streams, especially for scrapers and collector‐gatherers (25–75%). However, the contribution of algae to food webs decreased as forest management intensity (road density and associated sediments, water cations/carbon, and dissolved organic matter humification) increased, and as canopy openness decreased. This trend was probably due to an increase in the delivery of organic and inorganic terrestrial materials (dissolved and in suspension) in areas of greater harvesting intensity and road density, which resulted in more heterotrophic biofilms. Overall, results suggest that, despite the presence of riparian buffers, forest management can affect stream food web structure via changes in energy flows, and that increased protection should be directed at minimizing ground disturbance in areas with direct hydrological connection to streams and at reducing dissolved and particulate matter inputs from roads and stream crossings in catchments with high degrees of management activity.