Let A be an ℓ-algebra and let θ and ϕ be two endomorphisms of A. The couple (θ, ϕ) is called to be separating if xy = 0 implies θ(x)ϕ(y) = 0. If in addition θ and ϕ are ring endomorphisms of A, then the couple (θ, ϕ) is said to be ring-separating. An additive mapping δ : A → A is called (θ, ϕ)-separating derivation on A if there exists a (θ, ϕ)-separating couple with δ(xy) = δ(x)θ(y) + ϕ(x)δ(y), holds for all x, y ∈ A. If an addition θ, ϕ and δ are continuous, then δ is called a continuous (θ, ϕ)-ring-separating derivation. If in addition the couple (θ, ϕ) is ring-separating then δ is called a continuous (θ, ϕ)-ring-separating derivation. An additive mapping F : A → A is called a continuous generalized (θ, ϕ)-separating derivation on A if F is continuous mapping and if there exists a derivation d : A → A such that θ and ϕ are continuous, (θ, ϕ) is a separating couple and F(xy) = F(x)θ(y) + ϕ(x)d(y), holds for all x, y ∈ A. In this paper, we give a description of continuous (θ, ϕ)-ring-separating derivations on some ℓ-algebras. This generalizes a well-known theorem by Colville, Davis, and Keimel [Positive derivations on f-rings, J. Austral. Math. Soc23 (1977) 371–375] and generalizes the results of Boulabiar in [Positive derivations on almost f-rings, Order19 (2002) 385–395], Ben Amor [On orthosymmetric bilinear maps, Positivity14(1) (2010) 123–130] and Toumi et al. in [Order bounded derivations on Archimedean almost f-algebras, Positivity14(2) (2010) 239–245]. Moreover, inspiring from [Toumi, Order-bounded generalized derivations on Archimedean almost f-algebras, Commun. Algebra38(1) (2010) 154–164], it is shown that the notion of continuous generalized (θ, ϕ)-separating derivation on an archimedean almost f-algebra A is the concept of generalized θ-multiplier, that is an additive mapping satisfying F(xyz) = F(x)θ(yz), for all x, y, z ∈ A. In the case where A is an archimedean f-algebra, the situation improves. Indeed, the collection of all continuous generalized (θ, ϕ)-separating derivation on A coincides with the concept of θ-multiplier, that is an additive mapping satisfying F(xy) = F(x)θ(y), for all x, y ∈ A. If in addition A is a Dedekind complete vector lattice and θ is a positive mapping, then the set of all order bounded generalized of the form (θ, ϕ)-separating derivations on A, under composition, is an archimedean lattice-ordered algebra.