To improve the performance of polymer electrolyte membrane fuel cells (PEMFCs), controlling the microstructure of the membrane electrode assembly (MEA) catalyst layer is crucial. The ink design, which includes a catalyst, an ionomer, and a solvent, serves as the starting point for controlling the microstructure of the catalyst layer. However, there is a significant lack of understanding of the ink structure required for this purpose. In this study, we investigate the effect of the solvent, a key component that determines the ink structure. The ink comprises 20 wt% Pt/C, short-side-chain (SSC) Aquivion ionomer, and a solvent mixture of 1-propanol (NPA) and water. Three types of inks with different compositions of NPA and water are manufactured, and their stability and rheological properties are measured to infer and compare the ink structures. Furthermore, the crack characteristics of the catalyst layer are compared by directly coating the ink onto the electrolyte membrane using the doctor-blade method. In the ink with a high water content, we observed a gel-like elastic behavior dominated by network structures formed by ionomers adsorbed between catalyst particles. In contrast, the ink with a high NPA content exhibited a liquid-like viscous behavior dominated by welldispersed catalyst particles and ionomers. These properties of the inks directly influenced the crack formation characteristics after coating. Specifically, the strong liquid properties of the NPA-rich ink were found to suppress crack formation in the catalyst layer. These findings provide important insights into how the solvent composition affects ink structure and how it, in turn, influences crack formation in the catalyst layer, which can help optimize the ink design to improve the performance of PEMFCs.