Abstract:Due to elevated temperatures and high vacuum levels in electron beam melting (EBM), spatter formation and accumulation in the feedstock powder, and sublimation of alloying elements from the base feedstock powder can affect the feedstock powder’s reusability and change the alloy composition of fabricated parts. This study focused on the experimental and thermodynamic analysis of spatter particles generated in EBM, and analyzed sublimating alloying elements from Alloy 718 during EBM. Heat shields obtained after … Show more
“…In the figure, we see that the only other elements present in the sample were carbon (C) and oxygen (O). However, the carbon element was from the carbon strip used for SEM analysis and the oxygen (O) element can be traced back to the reactor chamber’s residual oxygen [ 73 ]. This implies that the process of reducing the indium salt precursor’s oxide-reduction has been completed.…”
Breast cancer (BC) is one of the most common types of cancer disease worldwide and it accounts for thousands of deaths annually. Lapatinib is among the preferred drugs for the treatment of breast cancer. Possible drug toxicity effects of lapatinib can be controlled by real-time determination of the appropriate dose for a patient at the point of care. In this study, a novel highly sensitive polymeric nanobiosensor for lapatinib is presented. A composite of poly(anilino-co-4-aminobenzoic acid) co-polymer {poly(ANI-co-4-ABA)} and coffee extract-based green-synthesized indium nanoparticles (InNPs) was used to develop the sensor platform on a screen-printed carbon electrode (SPCE), i.e., SPCE||poly(ANI-co-4-ABA-InNPs). Cytochrome P450-3A4 (CYP3A4) enzyme and polyethylene glycol (PEG) were incorporated on the modified platform to produce the SPCE||poly(ANI-co-4-ABA-InNPs)|CYP3A4|PEG lapatinib nanobiosensor. Experiments for the determination of the electrochemical response characteristics of the nanobiosensor were performed with cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The nanobiosensor calibration for 0–100 ng/mL lapatinib was linear and gave limit of detection (LOD) values of 13.21 ng/mL lapatinib and 18.6 ng/mL lapatinib in physiological buffer and human serum, respectively. The LOD values are much lower than the peak plasma concentration (Cmax) of lapatinib (2.43 µg/mL), which is attained 4 h after the administration of a daily dose of 1250 mg lapatinib. The electrochemical nanobiosensor also exhibited excellent anti-interference performance and stability.
“…In the figure, we see that the only other elements present in the sample were carbon (C) and oxygen (O). However, the carbon element was from the carbon strip used for SEM analysis and the oxygen (O) element can be traced back to the reactor chamber’s residual oxygen [ 73 ]. This implies that the process of reducing the indium salt precursor’s oxide-reduction has been completed.…”
Breast cancer (BC) is one of the most common types of cancer disease worldwide and it accounts for thousands of deaths annually. Lapatinib is among the preferred drugs for the treatment of breast cancer. Possible drug toxicity effects of lapatinib can be controlled by real-time determination of the appropriate dose for a patient at the point of care. In this study, a novel highly sensitive polymeric nanobiosensor for lapatinib is presented. A composite of poly(anilino-co-4-aminobenzoic acid) co-polymer {poly(ANI-co-4-ABA)} and coffee extract-based green-synthesized indium nanoparticles (InNPs) was used to develop the sensor platform on a screen-printed carbon electrode (SPCE), i.e., SPCE||poly(ANI-co-4-ABA-InNPs). Cytochrome P450-3A4 (CYP3A4) enzyme and polyethylene glycol (PEG) were incorporated on the modified platform to produce the SPCE||poly(ANI-co-4-ABA-InNPs)|CYP3A4|PEG lapatinib nanobiosensor. Experiments for the determination of the electrochemical response characteristics of the nanobiosensor were performed with cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The nanobiosensor calibration for 0–100 ng/mL lapatinib was linear and gave limit of detection (LOD) values of 13.21 ng/mL lapatinib and 18.6 ng/mL lapatinib in physiological buffer and human serum, respectively. The LOD values are much lower than the peak plasma concentration (Cmax) of lapatinib (2.43 µg/mL), which is attained 4 h after the administration of a daily dose of 1250 mg lapatinib. The electrochemical nanobiosensor also exhibited excellent anti-interference performance and stability.
“… Metal additive manufacturing (A) selective laser sintering [ 13 ], (B) selective laser melting [ 14 ], (C) electron beam melting [ 15 ], (D) laser direct metal deposition [ 16 ], (E) laser induced forward transfer [ 17 ], (F) atomic diffusion additive manufacturing [ 18 ], reproduced with permission. …”
Section: Metal 3d Printing Methodsmentioning
confidence: 99%
“…Similar to SLS and SLM, electron beam melting (EBM) is a common 3D printing technique for metal implants that uses a high-energy, high-speed electron beam to bombard metal powders, melt the powdered material and form the product [ 20 , 15 ]. EBM is one of the most common 3D printing techniques applied for orthopedic metal implants, such as acetabular cups with outer porous mesh structure regions, femoral knee implants, and intramedullary rods [ 2 ].…”
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.