Edited by Miguel De la Rosa
Keywords:Chloroplast dysfunction Fumonisin B1 Programmed cell death Phenylalanine ammonia lyase Reactive oxygen species Salicylic acid a b s t r a c tWe report a novel regulatory mechanism by which reactive oxygen species (ROS) regulate fumonisin B1 (FB1)-induced cell death. We found that FB1 induction of light-dependent ROS production promoted the degradation of GFP-labeled chloroplast proteins and increased phenylalanine ammonia lyase (PAL) activity, PAL1 gene expression and SA content, while pretreatment with ROS manipulators reversed these trends. Moreover, treatment with H 2 O 2 or 3-amino-1,2,4-triazole increased PAL activity, PAL1 gene expression and SA content. PAL inhibitor significantly blocked FB1-induced lesion formation and SA increase. Our results demonstrate that light-dependent ROS accumulation stimulates the degradation of chloroplastic proteins and up-regulates PAL-mediated SA synthesis, thus promoting FB1-induced light-dependent cell death.