Microorganisms are ubiquitously distributed in nature and usually appear as biofilms attached to a variety of surfaces. Here, we report the development of a thick biofilm in the drain pipe of several standard laboratory ice machines, and we describe and characterise, through culture-dependent and -independent techniques, the composition of this oligotrophic microbial community. By using culturomics, 25 different microbial strains were isolated and taxonomically identified. The 16S rRNA high-throughput sequencing analysis revealed that Bacteroidota and Proteobacteria were the most abundant bacterial phyla in the sample, followed by Acidobacteriota and Planctomycetota, while ITS high-throughput sequencing uncovered the fungal community was clearly dominated by the presence of a yet-unidentified genus from the Didymellaceae family. Alpha and beta diversity comparisons of the ice machine microbial community against that of other similar cold oligotrophic and/or artificial environments revealed a low similarity between samples, highlighting the ice machine could be considered a cold and oligotrophic niche with a unique selective pressure for colonisation of particular microorganisms. The recovery and analysis of high-quality metagenome-assembled genomes (MAGs) yielded a strikingly high rate of new species. The functional profiling of the metagenome sequences uncovered the presence of proteins involved in extracellular polymeric substance (EPS) and fimbriae biosynthesis and also allowed us to detect the key proteins involved in the cold adaptation mechanisms and oligotrophic metabolic pathways. The metabolic functions in the recovered MAGs confirmed that all MAGs have the genes involved in psychrophilic protein biosynthesis. In addition, the highest number of genes for EPS biosynthesis was presented in MAGs associated with the genus Sphingomonas, which was also recovered by culture-based method. Further, the MAGs with the highest potential gene number for oligotrophic protein production were closely affiliated with the genera Chryseoglobus and Mycobacterium. Our results reveal the surprising potential of a cold oligotrophic microecosystem within a machine as a source of new microbial taxa and provide the scientific community with clues about which microorganisms are able to colonise this ecological niche and what physiological mechanisms they develop. These results pave the way to understand how and why certain microorganisms can colonise similar anthropogenic environments.