To clarify the anti-obesity effect of Allomyrina dichotoma larvae (ADL), we previously reported that ADL block adipocyte differentiation on 3T3-L1 cell lines through downregulation of transcription factors, such as peroxisome proliferator-activated receptor-γ (PPARG) and CCAAT/enhancer binding protein-α (CEBPA). In this study, we tested whether ADL prevent obesity in mice fed a high-fat diet (HFD) and further investigated the mechanism underlying the effects of ADL. All mice were maintained on a normal-fat diet (NFD) for 1 week and then assigned to one of five treatment groups: (1) NFD; (2) HFD; (3) HFD and 100 mg·kg−1·day−1 ADL; (4) HFD and 3000 mg·kg−1·day−1ADL; or (5) HFD and 3000 mg·kg−1·day−1 yerba mate (Ilex paraguariensis, positive control). ADL and yerba mate were administered orally daily. Mice were fed experimental diets and body weight was monitored weekly for 6 weeks. Our results indicated that ADL reduced body weight gain, organ weight and adipose tissue volume in a dose-dependent manner. Body weight gain was approximately 22.4% lower compared to mice fed only HFD, but the difference did not reach the level of statistical significance. Real-time polymerase chain reaction (PCR) analysis revealed that gene expression levels of PPARG, CEBPA and lipoprotein lipase (LPL) in the epididymal fat tissue of HFD-fed mice receiving 3000 mg·kg−1·day−1 ADL were reduced by 12.4-, 25.7-, and 12.3-fold, respectively, compared to mice fed HFD only. Moreover, mice administered ADL had lower serum levels of triglycerides and leptin than HFD-fed mice that did not receive ADL. Taken together our results suggest that ADL and its constituent bioactive compounds hold potential for the treatment and prevention of obesity.