Although there is a growing recognition of the significance of hydrogen sulfide (H 2 S) as a biological signaling molecule involved in vascular and nervous system functions, its biogenesis and regulation are poorly understood. It is widely assumed that desulfhydration of cysteine is the major source of H 2 S in mammals and is catalyzed by the transsulfuration pathway enzymes, cystathionine -synthase and cystathionine ␥-lyase (CSE). In this study, we demonstrate that the profligacy of human CSE results in a variety of reactions that generate H 2 S from cysteine and homocysteine. The ␥-replacement reaction, which condenses two molecules of homocysteine, yields H 2 S and a novel biomarker, homolanthionine, which has been reported in urine of homocystinuric patients, whereas a -replacement reaction, which condenses two molecules of cysteine, generates lanthionine. Kinetic simulations at physiologically relevant concentrations of cysteine and homocysteine, reveal that the ␣,-elimination of cysteine accounts for ϳ70% of H 2 S generation. However, the relative importance of homocysteinederived H 2 S increases progressively with the grade of hyperhomocysteinemia, and under conditions of severely elevated homocysteine (200 M), the ␣,␥-elimination and ␥-replacement reactions of homocysteine together are predicted to account for ϳ90% of H 2 S generation by CSE. Excessive H 2 S production in hyperhomocysteinemia may contribute to the associated cardiovascular pathology.H 2 S is the newest member of a growing list of gaseous signaling molecules that modulate physiological functions (1-3). Concentrations of H 2 S ranging from 50 to 160 M have been reported in the brain (4), where it appears to function as a neuromodulator by potentiating the activity of the N-methyl-Daspartate receptor and by altering induction of long term potentiation in the hippocampus, important for memory and learning (5). H 2 S levels in human plasma are reported to be ϳ50 M, and in vitro studies suggest that it functions as a vasodilator by opening K ATP channels in vascular smooth muscle cells (6).A recent in vivo study has demonstrated the efficacy of H 2 S in attenuating myocardial ischemia-reperfusion injury by protecting mitochondrial function (7). The role of H 2 S in inflammation is suggested by several studies (8 -11); however, the underlying mechanism is unknown. Remarkably, H 2 S can also induce a state of suspended animation in mice by decreasing the metabolic rate and the core body temperature presumably by inhibiting cytochrome c oxidase in the respiratory chain (12).Endogenous H 2 S is presumed to be generated primarily by desulfhydration of cysteine catalyzed by the two pyridoxal phosphate (PLP) 3 -dependent enzymes in the transsulfuration pathway: cystathionine -synthase (CBS) and cystathionine ␥-lyase (CSE) (13,14). In fact, it is widely assumed, based on the reported absences of CSE in the brain (15) and of H 2 S in the brain of CBS knock-out mice (16), that CBS is the primary source of H 2 S in this organ, whereas CSE plays the...