The selectivity patterns of iron catalysts of the Fe(PDP) family in aliphatic C−H oxidation with H2O2 have been studied (PDP=N,N′‐bis(pyridine‐2‐ylmethyl)‐2,2′‐bipyrrolidine). Cyclohexane, adamantane, 1‐bromo‐3,7‐dimethyloctane, 3,7‐dimethyloctyl acetate, (−)‐acetoxy‐p‐menthane, and cis‐1,2‐dimethylcyclohexane were used as substrates. The studied catalyst systems generate low‐spin (S=1/2) oxoiron(V) intermediates or high‐spin (S=3/2) oxoiron(V) intermediates, depending on the electron‐donating ability of remote substituents at the pyridine rings. The low‐spin perferryl intermediates demonstrate lower stability and higher reactivity toward aliphatic C−H groups of cyclohexane than their high‐spin congeners, according to the measured self‐decay and second‐order rate constants k1 and k2. Unexpectedly, there appears to be no uniform correlation between the spin state of the oxoiron(V) intermediates, and the chemo‐ and regioselectivity of the corresponding catalyst systems in the oxidation of the considered substrates. This contrasts with the asymmetric epoxidations by the same catalyst systems, in which case the epoxidation enantioselectivity increases when passing from the systems featuring the more reactive low‐spin perferryl intermediates to those with their less reactive high‐spin congeners.