Aerosol OT/water exhibits a lamellar phase over a wide range of concentrations. We show, by magnetic resonance (NMR) and scanning electron microscopy (SEM), that the morphology of the lamellar phase varies significantly across that range and that the rate of equilibration depends strongly on concentration (25, 33, and 50 wt %) with, paradoxically, the faster equilibration at higher surfactant concentrations. We find that the 25 wt % sample exhibits a defect-rich local structure, characteristic of a superposed L(3) character. Further into the lamellar region, at 33 wt %, this defect-rich structure persists heterogeneously, while, at 50 wt %, the lamellar phase domains are highly ordered. The NMR methods used here included (2)H spectroscopy and the two-dimensional NMR method, diffusion-diffusion exchange spectroscopy (DEXSY). The latter was used to obtain quantitative information on the domain sizes and defects within the polydomain lamellar mesophase. Comparison of the NMR with the SEM results suggests that, at 25 wt % AOT, bilayer defects play an important role in influencing the (2)H NMR and DEXSY NMR results.