Abstract:Let B(O 2 ) = {x ∈ O 2 , | x |< 1} be the bounded realization of the exceptional symmetric space F 4(−20) /Spin(9). For a nonzero real number λ, we give a necessary and a sufficient condition on eigenfunctions F of the Laplace-Beltrami operator on B(O 2 ) with eigenvalue −(λ 2 + ρ 2 ) to have an L p -Poisson integral representations on the boundary ∂B(O 2 ). Namely, F is the Poisson integral of an L p -function on the boundary if and only if it satisfies the following growth condition of Hardy-type:This extend… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.