PurposeDevelopment of a method to assess the drug/polymer miscibility and stability of solid dispersions using a melt-based mixing method.MethodsAmorphous fractured films are prepared and characterized with Raman Microscopy in combination with Atomic Force Microscopy to discriminate between homogenously and heterogeneously mixed drug/polymer combinations. The homogenous combinations are analyzed further for physical stability under stress conditions, such as increased humidity or temperature.ResultsCombinations that have the potential to form a molecular disperse mixture are identified. Their potential to phase separate is determined through imaging at molecular length scales, which results in short observation time. De-mixing is quantified by phase separation analysis, and the drug/polymer combinations are ranked to identify the most stable combinations.ConclusionsThe presented results demonstrate that drug/polymer miscibility and stability of solid dispersions, with many mechanistic details, can be analyzed with Atomic Force Microscopy. The assay allows to identify well-miscible and stable combinations within hours or a few days.Electronic Supplementary MaterialThe online version of this article (doi:10.1007/s11095-010-0306-4) contains supplementary material, which is available to authorized users.