Polymer foams have wide application area due to their light weight, resistance to impact, high thermal insulation, and damping properties. Automotive, packing industry, electronic, aerospace, building construction, bedding, and medical applications are some of the ields that polymer foams have been used. However, depending on their cell structure-open or closed cell-polymer foams have diferent properties and diferent application areas. In this work, the most used thermoplastic foams with closed cells such as polypropylene, polyethylene, and polystyrene or polylactic acid have been focused. Their melt strength, degree of crystallinity for semi-crystalline ones, and viscosity have great importance on cell morphology. Cells in small diameter with high dense in polymer matrix are preferable. However, obtaining ine cells is not easy in each case, and it is still under investigation for some polymers. There are several ways to improve cell morphology, and one of them is addition of nanoparticle to the polymer. During foaming process, nanoparticles behave like nucleating agent that cells nucleate at the boundary between polymer and the nanoparticle. Besides, foaming agents contribute the homogenous dispersion of the nanoparticles in the polymer matrix, and this improves the properties of the polymer foams and generates multifunctional material as polymer nanocomposite foams.