We investigate main theoretical aspects of two-dimensional linear-hybrid cellular automata with periodic boundary condition over the Galois field GF(2). We focus on the characterization of two-dimensional hybrid linear cellular automata by way of a special algorithm. Here we set up a relation between reversibility of cellular automata and characterization of two-dimensional hybrid linear cellular automata with a special boundary conditions, i.e. periodic case. The determination of the characterization problem of special type of cellular automaton is studied by means of the matrix algebra theory. It is believed that this type of cellular automata could find many different applications in special case situations, e.g. image processing area, textile design, video processing, DNA research, etc., in the near future.