Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Recently unconventional gas resources including the shallow biogenic gas reservoirs have received great attention around the world due to technical advances in the field development and corresponding large in-place resources. However, the technologies needed for the effective development of unconventional reservoirs are still behind the industry needs, for example the gas recovery rates from these unconventional resources are still very low. The Miocene Gachsaran Formation across Onshore Abu Dhabi and Dubai possesses high potential of generating shallow biogenic gas. To understand and evaluate its capability for a promising gas resources a dynamic model and field development plan were generated based on a detail G&G analysis. The Gachsaran biogenic gas potential falls under the category of unconventional resources due to the existence of adsorbed gas within the organic matter and clay. The paper provides a detailed numerical simulation approach from a modified commercial simulators to simplify analytical solutions for adsorbed gas in-place calculation and full field development plan. The construction of dynamic model to tackle the growing advances in drilling and stimulation technologies for such complex tight reservoirs have become possible. These reservoirs are still challenging to produce due to their complex geology, tightness and requirements of advance production technologies such as hydraulic fracturing to achieve economical production rates. The gas flow mechanisms in nano-pores cannot be simply described by Darcy flow equation. In addition, due to large-scale fracturing, the conventional single porosity model is not enough to simulate the characteristics of these source rock type reservoirs. Furthermore, advanced simulation methods such as molecular dynamic simulation are computationally challenging and very time consuming. To mitigate these challenges, two alternative unique approaches were considered to model these reservoirs: (1) application of analytical methods to characterize the primary characteristics of nano-pores, and (2) extending the conventional simulator to effectively model flow from the nano-pores gas reservoirs. The study describes the theory and application utilized to modify and enhance the capability of conventional simulator. Consequently, to properly estimate the adsorbed gas in-place and integrate the effects of Langmuir gas desorption and gas diffusion effects. Therefore, the dual-porosity model was built and coupled with local grid refinement to capture the associated hydraulic fracture design and properties. This robust modeling approach has provided an enhancement in the field development planning of such a complex regional scale unconventional reservoir.
Recently unconventional gas resources including the shallow biogenic gas reservoirs have received great attention around the world due to technical advances in the field development and corresponding large in-place resources. However, the technologies needed for the effective development of unconventional reservoirs are still behind the industry needs, for example the gas recovery rates from these unconventional resources are still very low. The Miocene Gachsaran Formation across Onshore Abu Dhabi and Dubai possesses high potential of generating shallow biogenic gas. To understand and evaluate its capability for a promising gas resources a dynamic model and field development plan were generated based on a detail G&G analysis. The Gachsaran biogenic gas potential falls under the category of unconventional resources due to the existence of adsorbed gas within the organic matter and clay. The paper provides a detailed numerical simulation approach from a modified commercial simulators to simplify analytical solutions for adsorbed gas in-place calculation and full field development plan. The construction of dynamic model to tackle the growing advances in drilling and stimulation technologies for such complex tight reservoirs have become possible. These reservoirs are still challenging to produce due to their complex geology, tightness and requirements of advance production technologies such as hydraulic fracturing to achieve economical production rates. The gas flow mechanisms in nano-pores cannot be simply described by Darcy flow equation. In addition, due to large-scale fracturing, the conventional single porosity model is not enough to simulate the characteristics of these source rock type reservoirs. Furthermore, advanced simulation methods such as molecular dynamic simulation are computationally challenging and very time consuming. To mitigate these challenges, two alternative unique approaches were considered to model these reservoirs: (1) application of analytical methods to characterize the primary characteristics of nano-pores, and (2) extending the conventional simulator to effectively model flow from the nano-pores gas reservoirs. The study describes the theory and application utilized to modify and enhance the capability of conventional simulator. Consequently, to properly estimate the adsorbed gas in-place and integrate the effects of Langmuir gas desorption and gas diffusion effects. Therefore, the dual-porosity model was built and coupled with local grid refinement to capture the associated hydraulic fracture design and properties. This robust modeling approach has provided an enhancement in the field development planning of such a complex regional scale unconventional reservoir.
Objectives/Scope Aptian (Shuaiba-Bab) and Cenomanian (Mishrif-Shilaif) intra-shelf basins were extensively studied with their genesis focused on environmental/climatic disturbances (Vahrenkamp et al., 2015a). Additionally, local tectonic events can also affect the physiography of these basins, especially the Cenomanian intra-shelf basin subjected to NE compressional regime. As this ongoing regime increased at Late-Cretaceous and Miocene, it led to more tectonic-driven basin physiography. This paper investigates the areal extent, interaction, and commonalities between the extensional Aptian intra-shelf basin, compressional Late-Cretaceous intra-shelf basin, Late-Cretaceous-Paleogene foreland basin, and Late Oligocene-Miocene salt basin. Methods, Procedures, Process To understand the genesis, driving forces, and distribution of these basins, we used a combination of several large-scale stratigraphic well correlations and seismic, together with age dating, cores, and extensive well information (ADNOC proprietary internal reports). The methodology used this data for detailed mapping of 11 relevant time stratigraphic intervals, placing the mapped architecture in the context of the global eustatic sea level and major geodynamic events of the Arabian Plate. Results, Observations, Conclusions Aptian basin took place as a consequence of environmental/climatic disturbances (Vahrenkamp et al., 2015a). However, environmental factors alone cannot explain isolated carbonate build-ups on salt-related structures at the intra-shelf basin, offshore Abu Dhabi. Subsequently, the emplacement of thrust sheets of Tethyan rocks from NE, and following ophiolite obduction (Searle et al., 1990; Searle, 2007; Searle and Ali, 2009; Searle et al., 2014), established a compressional regime in the Albian?-Cenomanian. This induced tectonic features such as: loading-erosion on eastern Abu Dhabi, isolated carbonate build-ups, and reactivation of a N-S deep-rooted fault (possibly a continuation of Precambrian Amad basement ridge from KSA). This N-S feature was probably the main factor contributing the basin axis change from E-W Aptian trend to N-S position at Cenomanian. Further compression continued into the Coniacian-Santonian, leading to a nascent foreland basin. This compression established a foredeep in eastern Abu Dhabi, separated by a bulge from the northern extension of the eastern Rub’ Al-Khali basin (Ghurab syncline) (Patton and O'Connor, 1988). Numerous paleostructures were developed onshore Abu Dhabi, together with several small patch-reefs on offshore salt growing structures. Campanian exhibits maximum structuration associated to eastern transpression related to Masirah ophiolite obduction during India drift (Johnson et al., 2005, Filbrandt et al., 2006; Gaina et al., 2015). This caused more differentiation of the foredeep, onshore synclines, and northern paleostructures, which continued to cease through Maastrichtian. From Paleocene to Late-Eocene, paleostructure growth intensity continued decreasing and foreland basin hydrological restriction began with the Neotethys closure. Through Oligocene until Burdigalian this situation continued, where the Neotethys closed with the Zagros Orogeny (Sharland et al., 2001), causing a new environmental/climatic disturbances period. These disturbances prevented the continued progradation of the carbonate factory into the foredeep, leading to conspicuous platform-basin differentiation. Additionally, the Zagros orogeny tilted the plate northeastward, dismantling the paleostructures generated at Late-Cenomanian. Finally, during an arid climate in the Burdigalian to Middle-Miocene, the confined Neogene sea filled the foredeep accommodation space with massive evaporites. Novel/Additive Information Little has been published about the outline and architecture of these basins in Abu Dhabi and the detailed circumstances that led to their genesis using subsurface information.
Plan, drill and complete pioneer water disposal wells within the challenging Pilot Project of the complex unconventional reservoir and obtain approval, based on technical justification, of water reinjection within the Gachsaran Formation. This will exclude handling the additional manpower on a daily basis for managing water trucking operations day and night over the remote terrain to the nearby fields (90kms and 110kms). Consequently, this will reduce OPEX and extra liabilities incurred by HSE risks. The Project included five horizontal producers, completed for the first time within the Middle Gachsaran in the UAE's history. The expected field water production rates were 5000 bbl/d. There was no previous test data available to estimate the injectivity potential of the formation for water disposal. Additionally, no previous approvals were available from the HSE or the risk management team. Available G&G data and subsurface understanding were utilized to best optimize the water disposal wells. Potential reservoir zones were identified based on the good porosities with moderate permeabilities, vertical barriers and their confirmation through MDT pressure measurements, water intake information based on PLT results at nearby vertical wells, and reservoir connectivity. Subsurface and surface locations were finalized as near as possible to the pilot project facility to efficiently inject the water and reduce the CAPEX without compromising the subsurface targets and well integrity. The reservoir monitoring plan for the project was established to monitor any chance of vertical percolation of waste water in the shallow aquifer to avoid contamination. Multiple vertical barriers exist within the Gachsaran Formation with a regional seal that exists at 1850 ftTVDSS. The regional vertical seal exists at around 2000ft above the top of Middle Gachsaran. Therefore, there was rarely any chance that the injected water would communicate with the shallow formations. In brief, no vertical communication has been confirmed so far across the Gachsaran Formation within the Project Area based on the existence of vertical barriers (anhydrite beds-seals) and results of the formation pressure acquired at several wells and well test data in the area. The reservoir monitoring plan will allow us to overcome any possible chances of cross flow through cement behind the casing of the water disposal well to avoid shallow aquifer contamination. HSEIA / HSE (Safety) Case / HSE Studies Regulatory approval was successfully acquired. A test case to ensure the Middle Gachsaran as a water disposal candidate within the area. The reinjecting of produced water will save tremendous OPEX for full field development. This will create opportunities for new exploration blocks within this area to allow water disposal produced from deeper reservoirs. Consequently, we provide an attractive economic option to the overseas companies exploring deeper targets within this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.