The structures of the toxins produced by Cockliobolus victoriae, victorin B, C, D, E, and victoricine, have recently been established. These toxins and modified forms of victorin C were tested for their effect on dark CO2 fixation in susceptible oat (Avena sativa) leaf slices. Halfmaximal inhibition of dark CO2 fLxation occurred with the native toxins in the range of 0.004 to 0.546 micromolar. An essential component for the inhibitory activity of victorin is the glyoxylic acid residue, particularly its hydrated aldehyde group. Removal of glyoxylic acid completely abolished the inhibitory activity of victorin, and the reduction of the aldehydo group transformed the toxin into a protectant. Conversion of victorin to its methyl ester resulted in diminution of inhibitory activity to 10% of the original activity of the toxin, whereas derivatization of the eamino group of the ft-hydroxylysine moiety resulted in a decrease of inhibitory activity to 1% of that of victorin C. However, the derivatized toxin retained its host selectivity. In addition, the opening of the macrocyclic ring of the toxin drastically reduced the inhibitory activity.