Well sites, including both well pads and exploratory core holes, are small polygonal landscape disturbance features approximately one half to one hectare (0.5-1 ha) in area, resulting from oil and gas exploration activities. Automatic extraction and monitoring of such small features using remote-sensing technology at regional scales has always been desirable for wildlife habitat monitoring and environmental planning and modelling. Due to the vast disturbances of well sites in a province like Alberta, Canada, high-resolution imagery is not practical for well site extraction. For operational purposes, mid-resolution and cost-effective satellite imagery such as Landsat is the choice. However, automatic well site extraction using midresolution satellite imagery is a challenging task. Wells are typically less than three pixels in width and length in a Landsat multispectral image. Furthermore, the spectral contrast between the well site pixels and the surrounding areas is low due to vegetation regrowth and the spectral complexity of the surrounding environment. This article presents a novel methodology for automatic extraction of well sites from Landsat-5 TM imagery. The method combines both pixel-and objectbased image analyses and contains three major steps: geometric enhancement, segmentation, and well site extraction. The method was applied to Landsat-5 TM images acquired over Fort McMurray, Alberta, Canada. For accuracy assessment, four regions of interest were selected and the results of the proposed automatic method were evaluated against visual inspection of the Landsat-8 pan-sharpened image. The method results in a total average correctness, completeness, and quality measures of about 80, 96, and 77%, respectively over the four sites. In addition, the method is very fast as an entire Landsat scene is processed in less than 10 minutes. The method is an operational approach for automatic detection of well sites over the entire province and can dramatically reduce the labour cost of manual digitization for monitoring and updating well site maps.