2009
DOI: 10.1007/s10957-009-9617-1
|View full text |Cite
|
Sign up to set email alerts
|

Characterizations of r-Convex Functions

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
6
0
1

Year Published

2014
2014
2022
2022

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 17 publications
(9 citation statements)
references
References 13 publications
0
6
0
1
Order By: Relevance
“…A function f is r-convex (r-concave) if r > 0 (r < 0). The subject of rconvex attracted the interest of some researchers such as Antczak [3] and Zhao et al [23]. They studied some properties of r-convex that have important applications in mathematical programming and optimization.…”
Section: Definitions and Preliminary Resultsmentioning
confidence: 99%
“…A function f is r-convex (r-concave) if r > 0 (r < 0). The subject of rconvex attracted the interest of some researchers such as Antczak [3] and Zhao et al [23]. They studied some properties of r-convex that have important applications in mathematical programming and optimization.…”
Section: Definitions and Preliminary Resultsmentioning
confidence: 99%
“…В последнее время наблюдается повышение уровня абстрактности теории выпуклых функций, появляются новые способы характеризации выпуклости (например, в работе [22] устанавливаются аналоги неравенств типа неравенств Эрмита -Адамара для гармоническо-логарифмически выпуклых (log-HG-выпуклых) функций, а в работе [23] -для гармоническо-геометрически выпуклых функций). Одно из концептуальных обобщений понятия выпуклости (r-выпуклость) функции обсуждается в работе [24]. Авторами введено в рассмотрение понятие строгой r-выпуклости, что существенно для приложений.…”
Section: результаты исследованияunclassified
“…Alirazaie and Mahar [1] investigated the impact of exponentially concave functions in information theory. Zhao et al [200] discussed some characterizations of r-convex functions. Awan et al [5] also investigated some classes of exponentially convex functions.…”
Section: Introductionmentioning
confidence: 99%