We consider here spiking neural P systems with a non-synchronized (i.e., asynchronous) use of rules: in any step, a neuron can apply or not apply its rules which are enabled by the number of spikes it contains (further spikes can come, thus changing the rules enabled in the next step). Because the time between two firings of the output neuron is now irrelevant, the result of a computation is the number of spikes sent out by the system, not the distance between certain spikes leaving the system. The additional non-determinism introduced in the functioning of the system by the nonsynchronization is proved not to decrease the computing power in the case of using extended rules (several spikes can be produced by a rule). That is, we obtain again the equivalence with Turing machines (interpreted as generators of sets of (vectors of) numbers). However, this problem remains open for the case of restricted spiking neural P systems, whose rules can only produce one spike. On the other hand we prove that asynchronous systems, with extended rules, and where each neuron is either bounded or unbounded, are not computationally complete. For these systems, the configuration reachability, membership (in terms of generated vectors), emptiness, infiniteness, and disjointness problems are shown to be decidable. However, containment and equivalence are undecidable. In short, an SN P system consists of a set of neurons placed in the nodes of a directed graph and sending signals (spikes, denoted in what follows by the symbol a) along the arcs of the graph (they are called synapses). Thus, the architecture is that of a tissue-like P system, with only one kind of object present in the cells (the reader is referred to [18] for an introduction to membrane computing and to [23] for the up-to-date information about this research area). The objects evolve by means of standard spiking rules, which are of the form E/a c → a; d, where E is a regular expression over {a} and c, d are natural numbers, c ≥ 1, d ≥ 0. The meaning is that a neuron containing k spikes such that a k ∈ L(E), k ≥ c, can consume c spikes and produce one spike, after a delay of d steps. This spike is sent to all neurons connected by an outgoing synapse from the neuron where the rule was applied. There also are forgetting rules, of the form a s → λ, with the meaning that s ≥ 1 spikes are removed, provided that the neuron contains exactly s spikes. Extended rules were considered in [4], [17]: these rules are of the form E/a c → a p ; d, with the meaning that when using the rule, c spikes are consumed and p spikes are produced. Because p can be 0 or greater than 0, we obtain a generalization of both standard spiking and forgetting rules. In this paper we consider extended spiking rules with restrictions on the type of the regular expressions used. In particular, we consider two types of rules. The first type are called bounded rules and are of the form a i /a c → a p ; d, where 1 ≤ c ≤ i, p ≥ 0, and d ≥ 0. We also consider unbounded rules of the form a i (a j) * /a c → a p ; d...