The materials currently used in proton-exchange membrane fuel cells (PEMFCs) require complex control of operating conditions to make them sufficiently durable to permit commercial deployment. One of the major materials challenges to allow simplification of fuel cell operating strategies is the discovery of catalyst supports that are much more stable to oxidative decomposition than currently used carbon blacks. Here we report the synthesis and characterization of Ti(0.7)W(0.3)O2 nanoparticles (approximately 50 nm diameter), a promising doped metal oxide that is a candidate for such a durable catalyst support. The synthesized nanoparticles were platinized, characterized by electrochemical testing, and evaluated for stability under PEMFC and other oxidizing acidic conditions. Ti(0.7)W(0.3)O2 nanoparticles show no evidence of decomposition when heated in a Nafion solution for 3 weeks at 80 °C. In contrast, when heated in sulfuric, nitric, perchloric, or hydrochloric acid, the oxide reacts to form salts such as titanylsulfatehydrate from sulfuric acid. Electrochemical tests show that rates of hydrogen oxidation and oxygen reduction by platinum nanoparticles supported on Ti(0.7)W(0.3)O2 are comparable to those of commercial Pt on carbon black.