2019
DOI: 10.1101/824417
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Characterizing chromatin folding coordinate and landscape with deep learning

Abstract: Genome organization is critical for setting up the spatial environment of gene transcription, and substantial progress has been made towards its high-resolution characterization. The underlying molecular mechanism for its establishment is much less understood. We applied a deep-learning approach, variational autoencoder (VAE), to analyze the fluctuation and heterogeneity of chromatin structures revealed by single-cell super-resolution imaging and to identify a reaction coordinate for chromatin folding. This co… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 83 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?