2021
DOI: 10.48550/arxiv.2110.00459
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Characterizing Concurrency Mechanisms for NVIDIA GPUs under Deep Learning Workloads

Abstract: We investigate the performance of the concurrency mechanisms available on NVIDIA's new Ampere GPU microarchitecture under deep learning training and inference workloads. In contrast to previous studies that treat the GPU as a black box, we examine scheduling at the microarchitectural level. We find that the lack of fine-grained preemption mechanisms, robust task prioritization options, and contention-aware thread block placement policies limits the effectiveness of NVIDIA's concurrency mechanisms. In summary, … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 14 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?