I n many computational experiments, correlation is induced between certain types of coefficients in synthetic (or simulated) instances of classical optimization problems. Typically, the correlations that are induced are only qualified-that is, described by their presumed intensity. We quantify the population correlations induced under several strategies for simulating 0-1 knapsack problem instances and also for correlation-induction approaches used to simulate instances of the generalized assignment, capital budgeting (or multidimensional knapsack), and set-covering problems. We discuss implications of these correlation-induction methods for previous and future computational experiments on simulated optimization problems.