Background
An e-cigarette uses a battery to heat a liquid that generates an aerosol for consumers to inhale. e-Cigarette use (vaping) has been associated with respiratory disease, cardiovascular disease, and cognitive functions. Recently, vaping has become increasingly popular, especially among youth and young adults.
Objective
The aim of this study was to understand the social networks of Twitter (now rebranded as X) influencers related to e-cigarettes through social network analysis.
Methods
Through the Twitter streaming application programming interface, we identified 3,617,766 unique Twitter accounts posting e-cigarette–related tweets from May 3, 2021, to June 10, 2022. Among these, we identified 33 e-cigarette influencers. The followers of these influencers were grouped according to whether or not they post about e-cigarettes themselves; specifically, the former group was defined as having posted at least five e-cigarette–related tweets in the past year, whereas the latter group was defined as followers that had not posted any e-cigarette–related tweets in the past 3 years. We randomly sampled 100 user accounts among each group of e-cigarette influencer followers and created corresponding social networks for each e-cigarette influencer. We compared various network measures (eg, clustering coefficient) between the networks of the two follower groups.
Results
Major topics from e-cigarette–related tweets posted by the 33 e-cigarette influencers included advocating against vaping policy (48.0%), vaping as a method to quit smoking (28.0%), and vaping product promotion (24.0%). The follower networks of these 33 influencers showed more connections for those who also post about e-cigarettes than for followers who do not post about e-cigarettes, with significantly higher clustering coefficients for the former group (0.398 vs 0.098; P=.005). Further, networks of followers who post about e-cigarettes exhibited substantially more incoming and outgoing connections than those of followers who do not post about e-cigarettes, with significantly higher in-degree (0.273 vs 0.084; P=.02), closeness (0.452 vs 0.137; P=.04), betweenness (0.036 vs 0.008; P=.001), and out-of-degree (0.097 vs 0.014; P=.02) centrality values. The followers who post about e-cigarettes also had a significantly (P<.001) higher number of followers (n=322) than that of followers who do not post about e-cigarettes (n=201). The number of tweets in the networks of followers who post about e-cigarettes was significantly higher than that in the networks of followers who do not post about e-cigarettes (93 vs 43; P<.001). Two major topics discussed in the networks of followers who post about e-cigarettes included promoting e-cigarette products or vaping activity (55.7%) and vaping being a help for smoking cessation and harm reduction (44.3%).
Conclusions
Followers of e-cigarette influencers who also post about e-cigarettes have more closely connected networks than those of followers who do not themselves post about e-cigarettes. These findings provide a potentially practical intervention approach for future antivaping campaigns.