Extruded collagen fibers constitute a promising biomimetic scaffold for tissue engineering applications. In this study, we compared the structural, thermal, and mechanical properties of fibers produced from either NaCl or poly(ethylene glycol) with a number-average molecular weight of 8000 (PEG 8K), the only two coagents that have been used in the fabrication process. As novel, we report the fabrication of fibers with properties similar to native or synthetic fibers using other coagents. NaCl derived fibers were characterized by higher thermal stability (p < 0.026), stress (p < 0.001), and modulus (p < 0.0025) values than PEG 8K, whereas the latter yielded more extendable fibers (p < 0.012). Poly(ethylene glycol)s with number-average molecular weights of 200 and 1000 produced fibers with similar mechanical properties (p > 0.05) that were thinner (p < 0.033), stiffer (p < 0.022), and less extendable (p < 0.0002) than those of PEG 8K. Poly(vinyl alcohol) (PVA) with a numberaverage average molecular weight of 9-10,000 and PEG 8K yielded fibers with similar diameters and stress-at-break values (p > 0.05); however, the poly(ethylene glycol) derived fibers were more extendable (p < 0.0003), whereas the PVA fibers were stiffer (p < 0.029). Gum-arabic-and solublestarch-derived fibers were of similar tensile strength, extendibility, and stiffness (p > 0.05). In this in vitro study, the thickest (p < 0.011) and the weakest (p < 0.0066) fibers were produced in the presence of sodium sulfate.