Coal is a complex heterogeneous and anisotropic material conformed with fractal characteristics. The pore and fracture characteristics have important influence on the dynamic disasters including rock burst and gas outburst, however, the relationship between them is not accurately investigated due to inadequate research method. The pore and fracture distribution of coal with different bursting proneness were obtained by comprehensive application of MIP, LTNAD, SEM, and X-ray CT, and then fractal theory and DIC were used to research the pore and fracture characteristics. The result indicated that the modification of MIP result by LTNAD result could effectively eliminate the adverse effect of coal matrix compressibility, exactly reflect the distribution of pore and fracture in coal, and the pore distribution of coal with different bursting proneness were quite different. Gray scale image from SEM and 3D reconstruction technology based on X-ray CT could show the geological structure, fracture structure, and pore structure characteristics of coal. The study of LTNAD, SEM, and X-ray CT showed that these methods complemented each other, the coal had fractal properties, and the fractal dimension value had a positive correlation with the bursting proneness of coal sample.