2023
DOI: 10.48550/arxiv.2301.09507
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Characterizing Polarization in Social Networks using the Signed Relational Latent Distance Model

Abstract: Graph representation learning has become a prominent tool for the characterization and understanding of the structure of networks in general and social networks in particular. Typically, these representation learning approaches embed the networks into a low-dimensional space in which the role of each individual can be characterized in terms of their latent position. A major current concern in social networks is the emergence of polarization and filter bubbles promoting a mindset of "us-versus-them" that may be… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 33 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?