2019
DOI: 10.1177/0361198119837504
|View full text |Cite
|
Sign up to set email alerts
|

Characterizing the Importance of Criminal Factors Affecting Bus Ridership using Random Forest Ensemble Algorithm

Abstract: Public transit systems provide mass movement with substantial traffic operational and environmental benefits. Despite these benefits, they still represent a small market share in the United States. A comprehensive understanding of the determinants of transit ridership is essential for investment allocation to improve safety, mobility, and air quality in an urban area. Except socio-economic factors, crime has been identified as a determinant for the ridership. Most studies found that ridership and crime are lin… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2021
2021
2025
2025

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 11 publications
(3 citation statements)
references
References 20 publications
0
2
0
1
Order By: Relevance
“…Investigaciones posteriores en este mismo país han revelado que existe un umbral en donde el delito y la percepción de la inseguridad comienzan a hacerse determinantes en esta explicación del uso del transporte. Li et al (2019) mostraron que solo en ciudades y países con elevados niveles de delitos, la inseguridad se convierte en significativa para explicar los comportamientos de viaje. Este sería el caso de países del Sur Global como México y Nigeria, donde la extensión de la violencia implica la reducción de usuarios del transporte público (Vilalta, 2011;Odufawa, 2012).…”
Section: Discussionunclassified
“…Investigaciones posteriores en este mismo país han revelado que existe un umbral en donde el delito y la percepción de la inseguridad comienzan a hacerse determinantes en esta explicación del uso del transporte. Li et al (2019) mostraron que solo en ciudades y países con elevados niveles de delitos, la inseguridad se convierte en significativa para explicar los comportamientos de viaje. Este sería el caso de países del Sur Global como México y Nigeria, donde la extensión de la violencia implica la reducción de usuarios del transporte público (Vilalta, 2011;Odufawa, 2012).…”
Section: Discussionunclassified
“…Random forest is an integrated learning algorithm. , It has good tolerance for outliers and strong robustness. Its principle is to extract parts of the samples repeatedly from the sample set to generate multiple decision trees.…”
Section: Feature Selectionmentioning
confidence: 99%
“…Among commonly used supervised learning machine learning algorithms, the SVM (Data Envelopment Analysis) algorithm is generally suitable for binary classification problems [23,24], and the Naive Bayes algorithm is suitable for datasets with mutually independent feature values [25]. The Decision Tree algorithm [26,27], the K-Nearest Neighbors algorithm [28], and the Random Forest algorithm [29,30] are all more effective methods for the dataset under study. The K-Nearest Neighbors is easy to understand, simple and effective, relatively insensitive to outliers, and capable of solving both binary classification and multi-classification problems.…”
Section: Introductionmentioning
confidence: 99%