Tannerella forsythia, a Gram-negative oral bacterium closely associated with chronic periodontitis, naturally produces outer membrane vesicles (OMVs). In this study, OMVs were purified by gradient centrifugation, and the proteome was investigated together with cellular fractions using LC-MS/MS analyses of SDS-PAGE fractions, resulting in the identification of 872 proteins including 297 OMV proteins. Comparison of the OMV proteome with the subcellular proteomes led to the localization of 173 proteins to the vesicle membrane and 61 proteins to the vesicle lumen, while 27 substrates of the type IX secretion system were assigned to the vesicle surface. These substrates were generally enriched in OMVs; however, the stoichiometry of the S-layer proteins, TfsA and TfsB, was significantly altered, potentially to accommodate the higher curvature required of the S-layer around OMVs. A vast number of TonB-dependent receptors related to SusC, together with their associated SusD-like lipoproteins, were identified, and these were also relatively enriched in OMVs. In contrast, other lipoproteins were significantly depleted from the OMVs. This study identified the highest number of membrane-associated OMV proteins to date in any bacterium and conclusively demonstrates cargo sorting of particular classes of proteins, which may have significant impact on the virulence of OMVs.