As both the population and economic output of India continue to grow, so does its demand for electricity. Coupled with an increasing determination to transition to net zero, India has responded to this rising demand by rapidly expanding its installed renewable capacity: an increase of 60% in the last 5 years has been driven largely by a quintupling of installed solar capacity. In this study, we use broad variety of data sources to quantify potential and realized capacity over India from 1979 to 2022. For potential capacity, we identify spatiotemporal patterns in solar, wind, hydro and wave power. We show that solar capacity factor is relatively homogeneous across India, except over the western Himalaya, and is highest during the pre‐monsoon. Wind capacity factor is highest during the summer monsoon, and has high values off the southern coast, along the Western Ghats, and in Gujarat. We argue that wave power could be a useful source of renewable energy for the Andaman and Nicobar Islands, which are not connected to the main Indian power grid. Using gridded estimates of existing installed capacity combined with our historical capacity factor dataset, we create a simple but effective renewable production model. We use this model to identify weaknesses in the existing grid—particularly a lack of complementarity between wind and solar production in north India, and vulnerability to high‐deficit generation in the winter. We discuss potential avenues for future renewable investment to counter existing seasonality problems, principally offshore wind and high‐altitude solar.