Widespread application of solar water splitting for energy conversion is largely dependent on the progress in developing not only efficient, but also cheap and scalable photoelectrodes. Metal oxides, which can be deposited with scalable techniques and are relatively cheap, are particularly interesting, but high efficiency is still hindered by the poor carrier transport properties (i.e., carrier mobility and lifetime). In this paper, a mild hydrogen treatment is introduced to bismuth vanadate (BiVO4), which is one of the most promising metal oxide photoelectrodes, as a method to overcome the carrier transport limitations. Timeresolved microwave and terahertz conductivity measurements reveal more than two-fold enhancement of the carrier lifetime for the hydrogen-treated BiVO4, without significantly affecting the carrier mobility. This is in contrast to the case of tungsten-doped BiVO4, although hydrogen is also shown to be a donor type dopant in BiVO4. The enhancement in carrier lifetime is found to be caused by significant reduction of trap-assisted recombination, either via passivation of deep trap states or reduction of trap state density, which can be related to vanadium anti-site on bismuth or vanadium interstitials according to density functional theory calculations. Overall, these findings provide further insights on the interplay between defect modulation and carrier transport in metal oxide photoelectrodes, which will benefit the development of low-cost, highly-efficient solar energy conversion devices.