Iodine-doped bromide perovskite single crystals (IBPSCs) have important applications in optoelectronic fields, such as in solar cells. Currently, much research has aimed to study the phase separation phenomenon and device performance improvements in IBPSCs. However, important intrinsic photoexcited carrier dynamics are often overlooked in IBPSCs. Here, we explored the photoexcited carrier dynamics in typical iodine-doped MAPbBr 3 single crystals using the excitation intensity-dependent steady-state photoluminescence (PL) and timeresolved photoluminescence (TRPL) technique. We found that the trap state density changes with an increase in the amount of doped iodine. Further, we noticed that there is an influence of carrier diffusion on the photoexcited carrier dynamics, and then, we evaluated the carrier diffusion coefficients and recombination constants via numerical simulations of the PL kinetics. Consequently, we found that the electron shallow trap-related carrier behaviors substantially impacted the PL kinetics. Our results greatly facilitate a deeper understanding of the fundamental characteristics of mixed halide perovskite material.