a b s t r a c t a r t i c l e i n f oO 4 (SLNT, with x = 0.1, 0.2, and 0.4) proton conducting oxides were synthesized by solid state reaction for application as electrolyte in solid oxide fuel cells operating below 600°C. Dense pellets were obtained after sintering at 1600°C for 5 h achieving a larger average grain size with increasing the tantalum content. Dilatometric measurements were used to obtain the SLNT expansion coefficient as a function of tantalum content (x), and it was found that the phase transition temperature increased with increasing the tantalum content, being T = 561, 634, and 802°C for x = 0.1, 0.2, and 0.4, respectively. The electrical conductivity of SLNT was measured by electrochemical impedance spectroscopy as a function of temperature and tantalum concentration under wet (p H2O of about 0.03 atm) Ar atmosphere. At each temperature, the conductivity decreased with increasing the tantalum content, at 600°C being 2.68 × 10 −4 , 3.14 × 10 −5 , and 5.41 × 10 −6 Scm −1 for the x = 0.1, 0.2, and 0.4 compositions, respectively. SLNT with x = 0.2 shows a good compromise between proton conductivity and the requirement of avoiding detrimental phase transitions for application as a thin-film electrolyte below 600°C.