In this study, the effect on thin film growth due to an anomalous electron transport, found in high power impulse magnetron sputtering (HiPIMS) has been investigated for the case of a planar circular magnetron. An important consequence of this type of transport is that it affects the way ions are being transported in the plasma. It was found that a significant fraction of ions are transported radially outwards in the vicinity of the cathode, across the magnetic field lines, leading to increased deposition rates directly at the side of the cathode (perpendicular to the target surface). Furthermore, this mass transport parallel to the target surface leads to that the fraction of sputtered material reaching a substrate placed directly in front of the target is substantially lower in HiPIMS compared to conventional direct current magnetron sputtering (dcMS). This would help to explain the lower deposition rates generally observed for HiPIMS compared to dcMS. Moreover, time-averaged mass spectrometry measurements of the energy distribution of the cross-field transported ions were carried out. The measured distributions show a direction-dependent high-energy tail, in agreement with predictions of the anomalous transport mechanism.