Organic memory devices are a rapidly evolving field with much improvement in device performance, fabrication, and application. But the reports have been disparate in terms of the material behavior and the switching mechanisms in the devices. And, despite the advantages, the lack of agreement in regards to the switching behavior of the memory devices is the biggest challenge that the field must overcome to mature as a commercial competitor. This lack of consensus has been the motivation of this work wherein various works are compiled together to understand influencing factors in the memory devices. Different works are compared together to discover some clues about the nature of the switching occurring in the devices, along with some missing links that would require further investigation. The charge storage mechanism is critically analyzed alongside the various resistive switching mechanisms such as filamentary conduction, redox‐based switching, metal oxide switching, and other proposed mechanisms. The factors that affect the switching process are also analyzed including the effect of nanoparticles, the effect of the choice of polymer, or even the effect of electrodes on the switching behavior and the performance parameters of the memory device.